
Fraunhofer IPT High Performance Networked Adaptive Production (Hannover Fair 2018)
Wer sich den Anforderungen der Digitalen Transformation stellen will, muss in der Lage sein, in die Zukunft zu blicken. Nein, nicht mit Hilfe einer Kristallkugel oder mit Tarockkarten. Big Data lässt sich nur mit leistungsfähigen Analysesystemen beherrschen. Wobei hier eine Art „digitaler Dreisprung“ zu erkennen ist: Von der beschreibenden über die vorausschauende Analyse bis hin zu Empfehlungssystemen. Oder, um die englischen Termini zu verwenden: „Descriptive Analytics“, „Predictive Analytics“ und „Prescriptive Analytics“.
Deskriptive, oder beschreibende Analyse entspricht dem klassischen Reporting, wie er von alters her betrieben wird. Sie beschreibt den Status quo, also die historische Entwicklung des Unternehmens, zum Beispiel anhand von Zielabweichungen. Die darauf aufbauende „diagnostische Analyse“ versucht, aus diesen Ergebnissen Ursachen aufzuspüren, zum Beispiel warum liegen die Kosten über Plan oder warum stockt der Abverkauf? Diese so genannte Plan-Ist-Vergleiche sind heute das Rüstzeug jedes Controllers, und sie werden es auch in Zukunft bleiben. Allerdings lassen sich gerade solche Aufgaben heute weitgehend automatisieren.
Die durch die Automation gewonnene Zeit können Unternehmen in Zukunft für die vorausschauende Analyse, also für „Predictive Analytics“ nutzen – und sie werden sie nutzen müssen, wenn sie mithalten wollen. Es gibt eine Fülle von Software-Tools, die in der Lage sind, aus den Unmengen von Daten Muster zu erkennen oder Zusammenhänge zwischen scheinbar nicht verwandten Daten zu ziehen. Diese Software muss das Unternehmen nutzen und beherrschen, um mit Hilfe der entsprechenden Algorithmen nicht nur Prognosen zu wagen, sondern um die Eintrittswahrscheinlichkeit bestimmter Ereignisse zu berechnen und die Risikoverteilung zu ermitteln.
Leider erfolgen Finanzplanung (GuV, Bilanz & Cash Flow) und operative Planung (Absatz, Produktion, Personal) in den meisten Unternehmen getrennt. Sie haben deshalb oft keinen echten Bezug zu den Treibern des operativen Geschäfts. Mangelnde Berücksichtigung strategischer Ziele können aber zu unterschiedlichen Erwartungshaltungen auf verschiedenen Ebenen innerhalb des Unternehmens und damit zu erheblichem Abstimmungsaufwand führen.
Schneller und effizienter ist es, die auf das Geschäftsmodell abgestimmte Werttreiberplanung, wie sie in vielen Unternehmen heute eingesetzt wird, direkt mit Predictive Analytics zu verknüpfen. So lassen sich wesentlich bessere Voraussagen machen, die Auswirkungen auf das operative Geschäft werden klarer dargestellt.
Ist man aber erst einmal so weit, dann bietet sich der nächste logische Schritt von selber an: Die Automatisierung von unternehmerischen Entscheidungen. Womit wir bei „Prescriptive Anaytics“ angelangt wären. Weiterlesen